Well-posedness and scattering of inhomogeneous cubic-quintic NLS
نویسندگان
چکیده
منابع مشابه
Global Well-posedness for Cubic Nls with Nonlinear Damping
u(0) = u0(x), with given parameters λ ∈ R and σ > 0, the latter describing the strength of the dissipation within our model. We shall consider the physically relevant situation of d 6 3 spatial dimensions and assume that the dissipative nonlinearity is at least of the same order as the cubic one, i.e. p > 3. However, in dimension d = 3, we shall restrict ourselves to 3 6 p 6 5. In other words, ...
متن کاملGlobal Well-posedness of Nls-kdv Systems for Periodic Functions
We prove that the Cauchy problem of the Schrödinger-KortewegdeVries (NLS-KdV) system for periodic functions is globally well-posed for initial data in the energy space H1×H1. More precisely, we show that the nonresonant NLS-KdV system is globally well-posed for initial data in Hs(T) × Hs(T) with s > 11/13 and the resonant NLS-KdV system is globally wellposed with s > 8/9. The strategy is to app...
متن کاملScattering for 1d Cubic Nls and Singular Vortex Dynamics
In this paper we study the stability of the self-similar solutions of the binormal flow, which is a model for the dynamics of vortex filaments in fluids and super-fluids. These particular solutions χa(t, x) form a family of evolving regular curves of R that develop a singularity in finite time, indexed by a parameter a > 0. We consider curves that are small regular perturbations of χa(t0, x) fo...
متن کاملGlobal Well-posedness and Scattering for Defocusing Energy-critical Nls in the Exterior of Balls with Radial Data
We consider the defocusing energy-critical NLS in the exterior of the unit ball in three dimensions. For the initial value problem with Dirichlet boundary condition we prove global well-posedness and scattering with large radial initial data in the Sobolev space Ḣ1 0 . We also point out that the same strategy can be used to treat the energy-supercritical NLS in the exterior of balls with Dirich...
متن کاملGlobal Well-posedness and Scattering for Derivative Schrödinger Equation
In this paper we mainly study the Cauchy problem for the derivative nonlinear Schrödinger equation in d-dimension (d ≥ 2). We obtain some global well-posedness results with small initial data. The crucial ingredients are L e , L ∞,2 e type estimates, and inhomogeneous local smoothing estimate (L e estimate). As a by-product, the scattering results with small initial data are also obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2019
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.5053131